4445 - Non-toxic Anti-static Polyurethane Ducting Hose

This is a highly flexible polyurethane ducting hose designed for a range of applications including wood waste, sawdust, grain, sugar, grit, fumes and industrial vacuums.

This has a semi-rigid, crush resistant PVC helix and has an embedded nine strand copper wire enabling the discharge of static electricity.

The cross section is maintained even when highly flexed. The bore is smooth to achieve minimal frictional loss.

Technical Specifications

Tube	Highly flexible polyurethane tube			
Reinforcement	Embedded semi-rigid crush resistant PVC helix			
Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Application	Wood waste, sawdust, grain, sugar, grit, fumes and industrial vacuums. Also suitable for food contact applications..
:---	:---			
Other Features	Tough, extremely flexible and durable. Excellent abrasion resistance. Excellent resistance to hydrolysis. Stranded copper wire for static discharge. Non-toxic EU10-2011 approved materials. Outstanding resistance to the effects of weather. Minimum frictional loss is achieved by the smooth bore. Excellent chemical resistance.			

Please note that this is not suitable for transportation or exposure to fatty foods.

Product Table

ID		OD	Wall Thickness	Weight	Bend Radius	Vacuum Mtrs	Weight	Working Pressure	Max Coil
$\mathbf{m m}$	inch	$\mathbf{m m}$	$\mathbf{m m}$	$\mathbf{K g} / \mathbf{m}$	$\mathbf{m m}$	$\mathbf{H 2 O}$	$\mathbf{k g} / \mathbf{m}$	Bar	Metres
25	$1^{\prime \prime}$	30	2.7	0.15	25	5	0.15	1.0	20
32	$11 / 4^{\prime \prime}$	38	3.0	0.20	32	5	0.20	0.5	20
38	$11 / 2^{\prime \prime}$	44.6	3.3	0.23	38	5	0.23	0.5	20
51	$2^{\prime \prime}$	58	3.5	0.34	51	5	0.34	0.5	20
63	$21 / 2^{\prime \prime}$	70.6	3.8	0.43	63	4	0.43	-	20
76	$3 \prime$	84.8	4.4	0.55	76	4	0.55	-	20
89	$31 / 2^{\prime \prime}$	98.4	4.7	0.71	89	3	0.71	-	20
102	$4^{\prime \prime}$	112	5.2	0.82	102	3	0.82		20
127	$5^{\prime \prime}$	138.6	5.8	1.00	127	3	1.00	-	20
152	$6^{\prime \prime}$	164.8	6.4	1.37	152	3	1.37	-	20
203	$8^{\prime \prime}$	215	6.0	2.20	203	3	2.20	-	20

